20 散列表(下):为什么散列表和链表经常会一起使用?
我们已经学习了20节内容,你有没有发现,有两种数据结构,散列表和链表,经常会被放在一起使用。你还记得,前面的章节中都有哪些地方讲到散列表和链表的组合使用吗?我带你一起回忆一下。
在链表那一节,我讲到如何用链表来实现LRU缓存淘汰算法,但是链表实现的LRU缓存淘汰算法的时间复杂度是O(n),当时我也提到了,通过散列表可以将这个时间复杂度降低到O(1)。
在跳表那一节,我提到Redis的有序集合是使用跳表来实现的,跳表可以看作一种改进版的链表。当时我们也提到,Redis有序集合不仅使用了跳表,还用到了散列表。
除此之外,如果你熟悉Java编程语言,你会发现LinkedHashMap这样一个常用的容器,也用到了散列表和链表两种数据结构。
今天,我们就来看看,在这几个问题中,散列表和链表都是如何组合起来使用的,以及为什么散列表和链表会经常放到一块使用。
LRU缓存淘汰算法
在链表那一节中,我提到,借助散列表,我们可以把LRU缓存淘汰算法的时间复杂度降低为O(1)。现在,我们就来看看它是如何做到的。
首先,我们来回顾一下当时我们是如何通过链表实现LRU缓存淘汰算法的。
我们需要维护一个按照访问时间从大到小有序排列的链表结构。因为缓存大小有限,当缓存空间不够,需要淘汰一个数据的时候,我们就直接将链表头部的结点删除。
当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,我们就把它移动到链表的尾部。因为查找数据需要遍历链表,所以单纯用链表实现的LRU缓存淘汰算法的时间复杂很高,是O(n)。
实际上,我总结一下,一个缓存(cache)系统主要包含下面这几个操作:
- 往缓存中添加一个数据;
- 从缓存中删除一个数据;
- 在缓存中查找一个数据。
这三个操作都要涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是O(n)。如果我们将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到O(1)。具体的结构就是下面这个样子:
我们使用双向链表存储数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段hnext。这个hnext有什么作用呢?
因为我们的散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext指针是为了将结点串在散列表的拉链中。
了解了这个散列表和双向链表的组合存储结构之后,我们再来看,前面讲到的缓存的三个操作,是如何做到时间复杂度是O(1)的?
首先,我们来看如何查找一个数据。我们前面讲过,散列表中查找数据的时间复杂度接近O(1),所以通过散列表,我们可以很快地在缓存中找到一个数据。当找到数据之后,我们还需要将它移动到双向链表的尾部。
其次,我们来看如何删除一个数据。我们需要找到数据所在的结点,然后将结点删除。借助散列表,我们可以在O(1)时间复杂度里找到要删除的结点。因为我们的链表是双向链表,双向链表可以通过前驱指针O(1)时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要O(1)的时间复杂度。
最后,我们来看如何添加一个数据。添加数据到缓存稍微有点麻烦,我们需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。
这整个过程涉及的查找操作都可以通过散列表来完成。其他的操作,比如删除头结点、链表尾部插入数据等,都可以在O(1)的时间复杂度内完成。所以,这三个操作的时间复杂度都是O(1)。至此,我们就通过散列表和双向链表的组合使用,实现了一个高效的、支持LRU缓存淘汰算法的缓存系统原型。
Redis有序集合
在跳表那一节,讲到有序集合的操作时,我稍微做了些简化。实际上,在有序集合中,每个成员对象有两个重要的属性,key(键值)和score(分值)。我们不仅会通过score来查找数据,还会通过key来查找数据。
举个例子,比如用户积分排行榜有这样一个功能:我们可以通过用户的ID来查找积分信息,也可以通过积分区间来查找用户ID或者姓名信息。这里包含ID、姓名和积分的用户信息,就是成员对象,用户ID就是key,积分就是score。
所以,如果我们细化一下Redis有序集合的操作,那就是下面这样:
- 添加一个成员对象;
- 按照键值来删除一个成员对象;
- 按照键值来查找一个成员对象;
- 按照分值区间查找数据,比如查找积分在[100, 356]之间的成员对象;
- 按照分值从小到大排序成员变量;
如果我们仅仅按照分值将成员对象组织成跳表的结构,那按照键值来删除、查询成员对象就会很慢,解决方法与LRU缓存淘汰算法的解决方法类似。我们可以再按照键值构建一个散列表,这样按照key来删除、查找一个成员对象的时间复杂度就变成了O(1)。同时,借助跳表结构,其他操作也非常高效。
实际上,Redis有序集合的操作还有另外一类,也就是查找成员对象的排名(Rank)或者根据排名区间查找成员对象。这个功能单纯用刚刚讲的这种组合结构就无法高效实现了。这块内容我后面的章节再讲。
Java LinkedHashMap
前面我们讲了两个散列表和链表结合的例子,现在我们再来看另外一个,Java中的LinkedHashMap这种容器。
如果你熟悉Java,那你几乎天天会用到这个容器。我们之前讲过,HashMap底层是通过散列表这种数据结构实现的。而LinkedHashMap前面比HashMap多了一个“Linked”,这里的“Linked”是不是说,LinkedHashMap是一个通过链表法解决散列冲突的散列表呢?
实际上,LinkedHashMap并没有这么简单,其中的“Linked”也并不仅仅代表它是通过链表法解决散列冲突的。关于这一点,在我是初学者的时候,也误解了很久。
我们先来看一段代码。你觉得这段代码会以什么样的顺序打印3,1,5,2这几个key呢?原因又是什么呢?
HashMap<Integer, Integer> m = new LinkedHashMap<>();
m.put(3, 11);
m.put(1, 12);
m.put(5, 23);
m.put(2, 22);
for (Map.Entry e : m.entrySet()) {
System.out.println(e.getKey());
}
我先告诉你答案,上面的代码会按照数据插入的顺序依次来打印,也就是说,打印的顺序就是3,1,5,2。你有没有觉得奇怪?散列表中数据是经过散列函数打乱之后无规律存储的,这里是如何实现按照数据的插入顺序来遍历打印的呢?
你可能已经猜到了,LinkedHashMap也是通过散列表和链表组合在一起实现的。实际上,它不仅支持按照插入顺序遍历数据,还支持按照访问顺序来遍历数据。你可以看下面这段代码:
// 10是初始大小,0.75是装载因子,true是表示按照访问时间排序
HashMap<Integer, Integer> m = new LinkedHashMap<>(10, 0.75f, true);
m.put(3, 11);
m.put(1, 12);
m.put(5, 23);
m.put(2, 22);
m.put(3, 26);
m.get(5);
for (Map.Entry e : m.entrySet()) {
System.out.println(e.getKey());
}
这段代码打印的结果是1,2,3,5。我来具体分析一下,为什么这段代码会按照这样顺序来打印。
每次调用put()函数,往LinkedHashMap中添加数据的时候,都会将数据添加到链表的尾部,所以,在前四个操作完成之后,链表中的数据是下面这样:
在第8行代码中,再次将键值为3的数据放入到LinkedHashMap的时候,会先查找这个键值是否已经有了,然后,再将已经存在的(3,11)删除,并且将新的(3,26)放到链表的尾部。所以,这个时候链表中的数据就是下面这样:
当第9行代码访问到key为5的数据的时候,我们将被访问到的数据移动到链表的尾部。所以,第9行代码之后,链表中的数据是下面这样:
所以,最后打印出来的数据是1,2,3,5。从上面的分析,你有没有发现,按照访问时间排序的LinkedHashMap本身就是一个支持LRU缓存淘汰策略的缓存系统?实际上,它们两个的实现原理也是一模一样的。我也就不再啰嗦了。
我现在来总结一下,实际上,LinkedHashMap是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。
解答开篇&内容小结
弄懂刚刚我讲的这三个例子,开篇的问题也就不言而喻了。我这里总结一下,为什么散列表和链表经常一块使用?
散列表这种数据结构虽然支持非常高效的数据插入、删除、查找操作,但是散列表中的数据都是通过散列函数打乱之后无规律存储的。也就说,它无法支持按照某种顺序快速地遍历数据。如果希望按照顺序遍历散列表中的数据,那我们需要将散列表中的数据拷贝到数组中,然后排序,再遍历。
因为散列表是动态数据结构,不停地有数据的插入、删除,所以每当我们希望按顺序遍历散列表中的数据的时候,都需要先排序,那效率势必会很低。为了解决这个问题,我们将散列表和链表(或者跳表)结合在一起使用。
课后思考
- 今天讲的几个散列表和链表结合使用的例子里,我们用的都是双向链表。如果把双向链表改成单链表,还能否正常工作呢?为什么呢?
- 假设猎聘网有10万名猎头,每个猎头都可以通过做任务(比如发布职位)来积累积分,然后通过积分来下载简历。假设你是猎聘网的一名工程师,如何在内存中存储这10万个猎头ID和积分信息,让它能够支持这样几个操作:
- 根据猎头的ID快速查找、删除、更新这个猎头的积分信息;
- 查找积分在某个区间的猎头ID列表;
- 查找按照积分从小到大排名在第x位到第y位之间的猎头ID列表。
欢迎留言和我分享,我会第一时间给你反馈。
- Smallfly 👍(1045) 💬(26)
通过这 20 节课学习下来,个人感觉其实就两种数据结构,链表和数组。 数组占据随机访问的优势,却有需要连续内存的缺点。 链表具有可不连续存储的优势,但访问查找是线性的。 散列表和链表、跳表的混合使用,是为了结合数组和链表的优势,规避它们的不足。 我们可以得出数据结构和算法的重要性排行榜:连续空间 > 时间 > 碎片空间。 PS:跟专业的书籍相比,老师讲的真的是通俗易懂不废话,篇篇是干货。如果这个课程学不下去,学其它的会更加困难。暂时不懂的话反复阅读复习,外加查阅,一定可以的!
2018-11-05 - Smallfly 👍(457) 💬(44)
1. 在删除一个元素时,虽然能 O(1) 的找到目标结点,但是要删除该结点需要拿到前一个结点的指针,遍历到前一个结点复杂度会变为 O(N),所以用双链表实现比较合适。 (但其实硬要操作的话,单链表也是可以实现 O(1) 时间复杂度删除结点的)。 iOS 的同学可能知道,YYMemoryCache 就是结合散列表和双向链表来实现的。 2. 以积分排序构建一个跳表,再以猎头 ID 构建一个散列表。 1)ID 在散列表中所以可以 O(1) 查找到这个猎头; 2)积分以跳表存储,跳表支持区间查询; 3)这点根据目前学习的知识暂时无法实现,老师文中也提到了。
2018-11-05 - HunterYuan 👍(72) 💬(18)
看好些人询问LRU中设计的到pre,next和hnext的具体含义,将自己的理解说下,pre和next组成双向链表,这个链表是按照缓存的时间由大到小,组成的一个缓存队列;对于hnext作用是,在最新时间插入缓存数据时,通过哈希函数得出的冲突,用其连接。 总结:在双向链表中,时间是从大到小;在hnext组成的拉链中,时间从左到右依次变小。 核心:数据结构的设计,一定是建立应用场景之上,根据最新时间加入缓存。 这是自己的见解,若是有错误,希望争哥不吝赐教,thanks
2019-04-15 - Keep-Moving 👍(45) 💬(8)
LRU查找数据,查找到之后,不是应该把数据放到链表的头部吗?为什么这里说是尾部?
2018-11-05 - 莫问流年 👍(39) 💬(1)
怎么判断缓存已满,是要维护一个计数变量吗
2018-11-05 - 邸志惠 👍(31) 💬(2)
我不是科班出身,三年前准备学数据结构,却从没坚持下来,一度怀疑自己的智商有问题,但是看了老师的课程,篇篇都不由自主点赞啊,真是通俗易懂,鞭辟入里啊!感恩老师!
2019-10-08 - P@tricK 👍(28) 💬(11)
老师我想问下,散列表和双向链表结构中的散列值,是用链表中的data哈希的吗?因为这样才能用O(1)查找… 那问题来了,那我要在链表尾部插入数据时,根据什么方法用O(1)定位到尾部呢?
2018-11-07 - 微秒 👍(20) 💬(4)
通过散列表遍历后不用在遍历双向链表了,那怎么以o(1)的时间查找定位链表中的节点???除非,散列表的尺寸很大,使得散列表的节点中只有少量数据的链表????
2018-11-06 - ITACHI 👍(17) 💬(8)
第一个图我是这样理解的,不知道对不对: 通俗地将,浅色的线(对应pre、next指针)维系的是链表中用于存储缓存数据的节点位置关系。 而黑色的线(对应hnext指针)维系的是添加节点时发生冲突后,在某个桶的节点位置关系。 比如第一个桶的最后一个节点,应该是在添加时,发现有冲突,且应属于第一个桶,所以用hnext指针和第一个桶的最后一个节点连起来了。 而它又是链表的最后一个节点,所以同时也是和第五个桶的最后一个节点通过pre、next连在一起的。 也就是说实际上只有一个双向链表,灰色线(pre、next指针)维系节点在链表中的位置,新指针hnext维系的是发生冲突的节点在某个桶中的位置。 (这个理解比较笨,而且可能不准确,不过感觉这么想能说通这个图,请问大佬们,这样对么。。。)
2019-09-12 - Zeng Shine 👍(15) 💬(17)
“一个节点会存在两条拉链中,一条是双向链表,另一条是散列表中的拉链”,这句话描述的结构,怎么都想不明白。。
2018-11-06 - chenlong321 👍(13) 💬(10)
lru算法,缓存中,如果能查找到节点a,那么需要先删除a,再将a移动到双向链表的尾端,那这不就改变了节点a的hash bucket,下次怎么还能通过hash快速查找到节点a,请老师指教,谢谢
2019-04-16 - 前端西瓜哥 👍(9) 💬(1)
老师,你那个 LRU 的删除和添加操作,貌似没有说要更新拉链的链表呢?我觉得删除操作时,还要保存匹配节点在拉链中的上一个节点,通过hnext移除匹配节点;添加操作时,也要记录匹配拉链的最后一个节点k,且只有在发现数据不存在时,并将其添加到双链表末尾时,再让这个k指向这个新建的元素,不知道这样对不对?
2019-02-07 - Lucus 👍(8) 💬(5)
老师我有一点不明白,双向链表中节点要移动到尾部还有找到链表头节点应该都需要遍历链表吧,平均时间复杂度应该是O(n)啊?
2019-04-08 - james 👍(6) 💬(1)
我认为老师提供LRU的思路, 不是让你直接使用HashMap以及LinkedList开发, 而是重新开发一个类, 比如按照HashMap为模板改一改, jdk8为例, 人家不是已经有hash冲突的拉链了吗? 就是Node已经有了这几个属性: hash, key, value, next, 其中next就是老师说的hnext, 你就往Node里面再加俩属性: linkedPrev和LinkedNext不就ok了? 然后修改下put, get方法, 其中包含对链表的维护, 以及LRU方面的操作, 不知道我理解的对不对??
2019-02-02 - 吴小智 👍(4) 💬(3)
想请问一下,如何使用跳表来解决哈希冲突呢?没想通
2018-12-07