跳转至

64 状态模式:游戏、工作流引擎中常用的状态机是如何实现的?

从今天起,我们开始学习状态模式。在实际的软件开发中,状态模式并不是很常用,但是在能够用到的场景里,它可以发挥很大的作用。从这一点上来看,它有点像我们之前讲到的组合模式。

状态模式一般用来实现状态机,而状态机常用在游戏、工作流引擎等系统开发中。不过,状态机的实现方式有多种,除了状态模式,比较常用的还有分支逻辑法和查表法。今天,我们就详细讲讲这几种实现方式,并且对比一下它们的优劣和应用场景。

话不多说,让我们正式开始今天的学习吧!

什么是有限状态机?

有限状态机,英文翻译是Finite State Machine,缩写为FSM,简称为状态机。状态机有3个组成部分:状态(State)、事件(Event)、动作(Action)。其中,事件也称为转移条件(Transition Condition)。事件触发状态的转移及动作的执行。不过,动作不是必须的,也可能只转移状态,不执行任何动作。

对于刚刚给出的状态机的定义,我结合一个具体的例子,来进一步解释一下。

“超级马里奥”游戏不知道你玩过没有?在游戏中,马里奥可以变身为多种形态,比如小马里奥(Small Mario)、超级马里奥(Super Mario)、火焰马里奥(Fire Mario)、斗篷马里奥(Cape Mario)等等。在不同的游戏情节下,各个形态会互相转化,并相应的增减积分。比如,初始形态是小马里奥,吃了蘑菇之后就会变成超级马里奥,并且增加100积分。

实际上,马里奥形态的转变就是一个状态机。其中,马里奥的不同形态就是状态机中的“状态”,游戏情节(比如吃了蘑菇)就是状态机中的“事件”,加减积分就是状态机中的“动作”。比如,吃蘑菇这个事件,会触发状态的转移:从小马里奥转移到超级马里奥,以及触发动作的执行(增加100积分)。

为了方便接下来的讲解,我对游戏背景做了简化,只保留了部分状态和事件。简化之后的状态转移如下图所示:

我们如何编程来实现上面的状态机呢?换句话说,如何将上面的状态转移图翻译成代码呢?

我写了一个骨架代码,如下所示。其中,obtainMushRoom()、obtainCape()、obtainFireFlower()、meetMonster()这几个函数,能够根据当前的状态和事件,更新状态和增减积分。不过,具体的代码实现我暂时并没有给出。你可以把它当做面试题,试着补全一下,然后再来看我下面的讲解,这样你的收获会更大。

public enum State {
  SMALL(0),
  SUPER(1),
  FIRE(2),
  CAPE(3);

  private int value;

  private State(int value) {
    this.value = value;
  }

  public int getValue() {
    return this.value;
  }
}

public class MarioStateMachine {
  private int score;
  private State currentState;

  public MarioStateMachine() {
    this.score = 0;
    this.currentState = State.SMALL;
  }

  public void obtainMushRoom() {
    //TODO
  }

  public void obtainCape() {
    //TODO
  }

  public void obtainFireFlower() {
    //TODO
  }

  public void meetMonster() {
    //TODO
  }

  public int getScore() {
    return this.score;
  }

  public State getCurrentState() {
    return this.currentState;
  }
}

public class ApplicationDemo {
  public static void main(String[] args) {
    MarioStateMachine mario = new MarioStateMachine();
    mario.obtainMushRoom();
    int score = mario.getScore();
    State state = mario.getCurrentState();
    System.out.println("mario score: " + score + "; state: " + state);
  }
}

状态机实现方式一:分支逻辑法

对于如何实现状态机,我总结了三种方式。其中,最简单直接的实现方式是,参照状态转移图,将每一个状态转移,原模原样地直译成代码。这样编写的代码会包含大量的if-else或switch-case分支判断逻辑,甚至是嵌套的分支判断逻辑,所以,我把这种方法暂且命名为分支逻辑法。

按照这个实现思路,我将上面的骨架代码补全一下。补全之后的代码如下所示:

public class MarioStateMachine {
  private int score;
  private State currentState;

  public MarioStateMachine() {
    this.score = 0;
    this.currentState = State.SMALL;
  }

  public void obtainMushRoom() {
    if (currentState.equals(State.SMALL)) {
      this.currentState = State.SUPER;
      this.score += 100;
    }
  }

  public void obtainCape() {
    if (currentState.equals(State.SMALL) || currentState.equals(State.SUPER) ) {
      this.currentState = State.CAPE;
      this.score += 200;
    }
  }

  public void obtainFireFlower() {
    if (currentState.equals(State.SMALL) || currentState.equals(State.SUPER) ) {
      this.currentState = State.FIRE;
      this.score += 300;
    }
  }

  public void meetMonster() {
    if (currentState.equals(State.SUPER)) {
      this.currentState = State.SMALL;
      this.score -= 100;
      return;
    }

    if (currentState.equals(State.CAPE)) {
      this.currentState = State.SMALL;
      this.score -= 200;
      return;
    }

    if (currentState.equals(State.FIRE)) {
      this.currentState = State.SMALL;
      this.score -= 300;
      return;
    }
  }

  public int getScore() {
    return this.score;
  }

  public State getCurrentState() {
    return this.currentState;
  }
}

对于简单的状态机来说,分支逻辑这种实现方式是可以接受的。但是,对于复杂的状态机来说,这种实现方式极易漏写或者错写某个状态转移。除此之外,代码中充斥着大量的if-else或者switch-case分支判断逻辑,可读性和可维护性都很差。如果哪天修改了状态机中的某个状态转移,我们要在冗长的分支逻辑中找到对应的代码进行修改,很容易改错,引入bug。

状态机实现方式二:查表法

实际上,上面这种实现方法有点类似hard code,对于复杂的状态机来说不适用,而状态机的第二种实现方式查表法,就更加合适了。接下来,我们就一块儿来看下,如何利用查表法来补全骨架代码。

实际上,除了用状态转移图来表示之外,状态机还可以用二维表来表示,如下所示。在这个二维表中,第一维表示当前状态,第二维表示事件,值表示当前状态经过事件之后,转移到的新状态及其执行的动作。

相对于分支逻辑的实现方式,查表法的代码实现更加清晰,可读性和可维护性更好。当修改状态机时,我们只需要修改transitionTable和actionTable两个二维数组即可。实际上,如果我们把这两个二维数组存储在配置文件中,当需要修改状态机时,我们甚至可以不修改任何代码,只需要修改配置文件就可以了。具体的代码如下所示:

public enum Event {
  GOT_MUSHROOM(0),
  GOT_CAPE(1),
  GOT_FIRE(2),
  MET_MONSTER(3);

  private int value;

  private Event(int value) {
    this.value = value;
  }

  public int getValue() {
    return this.value;
  }
}

public class MarioStateMachine {
  private int score;
  private State currentState;

  private static final State[][] transitionTable = {
          {SUPER, CAPE, FIRE, SMALL},
          {SUPER, CAPE, FIRE, SMALL},
          {CAPE, CAPE, CAPE, SMALL},
          {FIRE, FIRE, FIRE, SMALL}
  };

  private static final int[][] actionTable = {
          {+100, +200, +300, +0},
          {+0, +200, +300, -100},
          {+0, +0, +0, -200},
          {+0, +0, +0, -300}
  };

  public MarioStateMachine() {
    this.score = 0;
    this.currentState = State.SMALL;
  }

  public void obtainMushRoom() {
    executeEvent(Event.GOT_MUSHROOM);
  }

  public void obtainCape() {
    executeEvent(Event.GOT_CAPE);
  }

  public void obtainFireFlower() {
    executeEvent(Event.GOT_FIRE);
  }

  public void meetMonster() {
    executeEvent(Event.MET_MONSTER);
  }

  private void executeEvent(Event event) {
    int stateValue = currentState.getValue();
    int eventValue = event.getValue();
    this.currentState = transitionTable[stateValue][eventValue];
    this.score += actionTable[stateValue][eventValue];
  }

  public int getScore() {
    return this.score;
  }

  public State getCurrentState() {
    return this.currentState;
  }

}

状态机实现方式三:状态模式

在查表法的代码实现中,事件触发的动作只是简单的积分加减,所以,我们用一个int类型的二维数组actionTable就能表示,二维数组中的值表示积分的加减值。但是,如果要执行的动作并非这么简单,而是一系列复杂的逻辑操作(比如加减积分、写数据库,还有可能发送消息通知等等),我们就没法用如此简单的二维数组来表示了。这也就是说,查表法的实现方式有一定局限性。

虽然分支逻辑的实现方式不存在这个问题,但它又存在前面讲到的其他问题,比如分支判断逻辑较多,导致代码可读性和可维护性不好等。实际上,针对分支逻辑法存在的问题,我们可以使用状态模式来解决。

状态模式通过将事件触发的状态转移和动作执行,拆分到不同的状态类中,来避免分支判断逻辑。我们还是结合代码来理解这句话。

利用状态模式,我们来补全MarioStateMachine类,补全后的代码如下所示。

其中,IMario是状态的接口,定义了所有的事件。SmallMario、SuperMario、CapeMario、FireMario是IMario接口的实现类,分别对应状态机中的4个状态。原来所有的状态转移和动作执行的代码逻辑,都集中在MarioStateMachine类中,现在,这些代码逻辑被分散到了这4个状态类中。

public interface IMario { //所有状态类的接口
  State getName();
  //以下是定义的事件
  void obtainMushRoom();
  void obtainCape();
  void obtainFireFlower();
  void meetMonster();
}

public class SmallMario implements IMario {
  private MarioStateMachine stateMachine;

  public SmallMario(MarioStateMachine stateMachine) {
    this.stateMachine = stateMachine;
  }

  @Override
  public State getName() {
    return State.SMALL;
  }

  @Override
  public void obtainMushRoom() {
    stateMachine.setCurrentState(new SuperMario(stateMachine));
    stateMachine.setScore(stateMachine.getScore() + 100);
  }

  @Override
  public void obtainCape() {
    stateMachine.setCurrentState(new CapeMario(stateMachine));
    stateMachine.setScore(stateMachine.getScore() + 200);
  }

  @Override
  public void obtainFireFlower() {
    stateMachine.setCurrentState(new FireMario(stateMachine));
    stateMachine.setScore(stateMachine.getScore() + 300);
  }

  @Override
  public void meetMonster() {
    // do nothing...
  }
}

public class SuperMario implements IMario {
  private MarioStateMachine stateMachine;

  public SuperMario(MarioStateMachine stateMachine) {
    this.stateMachine = stateMachine;
  }

  @Override
  public State getName() {
    return State.SUPER;
  }

  @Override
  public void obtainMushRoom() {
    // do nothing...
  }

  @Override
  public void obtainCape() {
    stateMachine.setCurrentState(new CapeMario(stateMachine));
    stateMachine.setScore(stateMachine.getScore() + 200);
  }

  @Override
  public void obtainFireFlower() {
    stateMachine.setCurrentState(new FireMario(stateMachine));
    stateMachine.setScore(stateMachine.getScore() + 300);
  }

  @Override
  public void meetMonster() {
    stateMachine.setCurrentState(new SmallMario(stateMachine));
    stateMachine.setScore(stateMachine.getScore() - 100);
  }
}

// 省略CapeMario、FireMario类...

public class MarioStateMachine {
  private int score;
  private IMario currentState; // 不再使用枚举来表示状态

  public MarioStateMachine() {
    this.score = 0;
    this.currentState = new SmallMario(this);
  }

  public void obtainMushRoom() {
    this.currentState.obtainMushRoom();
  }

  public void obtainCape() {
    this.currentState.obtainCape();
  }

  public void obtainFireFlower() {
    this.currentState.obtainFireFlower();
  }

  public void meetMonster() {
    this.currentState.meetMonster();
  }

  public int getScore() {
    return this.score;
  }

  public State getCurrentState() {
    return this.currentState.getName();
  }

  public void setScore(int score) {
    this.score = score;
  }

  public void setCurrentState(IMario currentState) {
    this.currentState = currentState;
  }
}

上面的代码实现不难看懂,我只强调其中的一点,即MarioStateMachine和各个状态类之间是双向依赖关系。MarioStateMachine依赖各个状态类是理所当然的,但是,反过来,各个状态类为什么要依赖MarioStateMachine呢?这是因为,各个状态类需要更新MarioStateMachine中的两个变量,score和currentState。

实际上,上面的代码还可以继续优化,我们可以将状态类设计成单例,毕竟状态类中不包含任何成员变量。但是,当将状态类设计成单例之后,我们就无法通过构造函数来传递MarioStateMachine了,而状态类又要依赖MarioStateMachine,那该如何解决这个问题呢?

实际上,在第42讲单例模式的讲解中,我们提到过几种解决方法,你可以回过头去再查看一下。在这里,我们可以通过函数参数将MarioStateMachine传递进状态类。根据这个设计思路,我们对上面的代码进行重构。重构之后的代码如下所示:

public interface IMario {
  State getName();
  void obtainMushRoom(MarioStateMachine stateMachine);
  void obtainCape(MarioStateMachine stateMachine);
  void obtainFireFlower(MarioStateMachine stateMachine);
  void meetMonster(MarioStateMachine stateMachine);
}

public class SmallMario implements IMario {
  private static final SmallMario instance = new SmallMario();
  private SmallMario() {}
  public static SmallMario getInstance() {
    return instance;
  }

  @Override
  public State getName() {
    return State.SMALL;
  }

  @Override
  public void obtainMushRoom(MarioStateMachine stateMachine) {
    stateMachine.setCurrentState(SuperMario.getInstance());
    stateMachine.setScore(stateMachine.getScore() + 100);
  }

  @Override
  public void obtainCape(MarioStateMachine stateMachine) {
    stateMachine.setCurrentState(CapeMario.getInstance());
    stateMachine.setScore(stateMachine.getScore() + 200);
  }

  @Override
  public void obtainFireFlower(MarioStateMachine stateMachine) {
    stateMachine.setCurrentState(FireMario.getInstance());
    stateMachine.setScore(stateMachine.getScore() + 300);
  }

  @Override
  public void meetMonster(MarioStateMachine stateMachine) {
    // do nothing...
  }
}

// 省略SuperMario、CapeMario、FireMario类...

public class MarioStateMachine {
  private int score;
  private IMario currentState;

  public MarioStateMachine() {
    this.score = 0;
    this.currentState = SmallMario.getInstance();
  }

  public void obtainMushRoom() {
    this.currentState.obtainMushRoom(this);
  }

  public void obtainCape() {
    this.currentState.obtainCape(this);
  }

  public void obtainFireFlower() {
    this.currentState.obtainFireFlower(this);
  }

  public void meetMonster() {
    this.currentState.meetMonster(this);
  }

  public int getScore() {
    return this.score;
  }

  public State getCurrentState() {
    return this.currentState.getName();
  }

  public void setScore(int score) {
    this.score = score;
  }

  public void setCurrentState(IMario currentState) {
    this.currentState = currentState;
  }
}

实际上,像游戏这种比较复杂的状态机,包含的状态比较多,我优先推荐使用查表法,而状态模式会引入非常多的状态类,会导致代码比较难维护。相反,像电商下单、外卖下单这种类型的状态机,它们的状态并不多,状态转移也比较简单,但事件触发执行的动作包含的业务逻辑可能会比较复杂,所以,更加推荐使用状态模式来实现。

重点回顾

好了,今天的内容到此就讲完了。我们一块来总结回顾一下,你需要重点掌握的内容。

今天我们讲解了状态模式。虽然网上有各种状态模式的定义,但是你只要记住状态模式是状态机的一种实现方式即可。状态机又叫有限状态机,它有3个部分组成:状态、事件、动作。其中,事件也称为转移条件。事件触发状态的转移及动作的执行。不过,动作不是必须的,也可能只转移状态,不执行任何动作。

针对状态机,今天我们总结了三种实现方式。

第一种实现方式叫分支逻辑法。利用if-else或者switch-case分支逻辑,参照状态转移图,将每一个状态转移原模原样地直译成代码。对于简单的状态机来说,这种实现方式最简单、最直接,是首选。

第二种实现方式叫查表法。对于状态很多、状态转移比较复杂的状态机来说,查表法比较合适。通过二维数组来表示状态转移图,能极大地提高代码的可读性和可维护性。

第三种实现方式叫状态模式。对于状态并不多、状态转移也比较简单,但事件触发执行的动作包含的业务逻辑可能比较复杂的状态机来说,我们首选这种实现方式。

课堂讨论

状态模式的代码实现还存在一些问题,比如,状态接口中定义了所有的事件函数,这就导致,即便某个状态类并不需要支持其中的某个或者某些事件,但也要实现所有的事件函数。不仅如此,添加一个事件到状态接口,所有的状态类都要做相应的修改。针对这些问题,你有什么解决方法吗?

欢迎留言和我分享你的想法。如果有收获,欢迎你把这篇文章分享给你的朋友。

精选留言(15)
  • DFighting 👍(30) 💬(5)

    不太赞同老师的这种抽象方式,状态机中的每个状态应该具有事件、触发条件、转移(方法)列表,每一个应该都可以抽象为一个接口或者泛型类,状态机作为一个单例这个没问题,但是状态机应该只是作为一个状态的注册工厂,里面具有的应该是多种状态,状态间的流转才是状态机最重要的功能抽象。score放在状态和状态机中都不合适,这应该是状态机操纵的一个对象/资源,应该单独抽象出来,在状态间流转

    2020-11-21

  • 进击的巨人 👍(3) 💬(2)

    感觉状态模式就是一个策略模式

    2020-11-27

  • 吃饭睡觉打酱油 👍(1) 💬(1)

    老师,在使用状态机的时候,初始状态应该是可以支持初始化的吧。

    2020-06-20

  • Geek_78eadb 👍(0) 💬(2)

    课后题: 1. 使用抽象工厂模式实现 Action 类:即根据不同的状态实现 ObtainMushRoom 等动作类,比如 ObtainMushRoom 的初始化需要传入目前状态和目前分数, ObtainMushRoom 可以利用状态机的查表法进行状态转移和其它动作

    2020-11-28

  • 打工人233号 👍(0) 💬(1)

    如果一种状态转移对应多种状态如何处理呢?

    2020-11-13

  • 慕枫技术笔记 👍(0) 💬(3)

    查表法在状态新增的情况下怎么做到不修改代码的?

    2020-07-29

  • pippin 👍(0) 💬(2)

    查表法的这个数组有问题吧,transitionTable[0][0]应该是SMALL吧。这里应该是写错了吧。private static final State[][] transitionTable = { {SUPER, CAPE, FIRE, SMALL}, {SUPER, CAPE, FIRE, SMALL}, {CAPE, CAPE, CAPE, SMALL}, {FIRE, FIRE, FIRE, SMALL} };

    2020-04-13

  • 张先生丶 👍(153) 💬(6)

    关于课堂讨论,可以在接口和实现类中间加一层抽象类解决此问题,抽象类实现状态接口,状态类继承抽象类,只需要重写需要的方法即可

    2020-03-30

  • Darren 👍(58) 💬(0)

    Java中Spring也有有限状态机的框架 :https://github.com/spring-projects/spring-statemachine

    2020-04-14

  • 下雨天 👍(34) 💬(2)

    课后题 最小接口原则 具体做法:状态类只关心与自己相关的接口,将状态接口中定义的事件函数按事件分类,拆分到不同接口中,通过这些新接口的组合重新实现状态类即可!

    2020-03-30

  • 小晏子 👍(25) 💬(0)

    课后思考:要解决这个问题可以有两种方式1. 直接使用抽象类替代接口,抽象类中对每个时间有个默认的实现,比如抛出unimplemented exception,这样子类要使用的话必须自己实现。2. 就是还是使用接口定义事件,但是额外创建一个抽象类实现这个接口,然后具体的状态实现类继承这个抽象类,这种方式好处在于可扩展性强,可以处理将来有不相关的事件策略加入进来的情况。

    2020-03-30

  • Amon Tin 👍(18) 💬(5)

    状态和事件都可能随需求增加,可以利用callback的方式,将这类组合逻辑注册到对应状态类。代码实现如下: /** * 事件枚举 */ public enum Event { A,B,C } /** * 事件回调 * Created on 2021-06-24 */ public interface IEventCallback { void onEvent(StateMachine sm); } /** * 状态抽象类 */ public abstract class State { protected String name; protected Map<Event, IEventCallback> events = new HashMap<>(); public final void triggerEvent(Event e, StateMachine sm) { IEventCallback call = events.get(e); if (call != null) { call.onEvent(sm); } } } //S1状态类 public class S1State extends State { private static final S1State instance = new S1State(); Map<Event, IEventCallback> events = new HashMap<>(); public static S1State getInstance() { return instance; } //S1状态只关心A、B事件 private S1State() { name = "S1"; events.put(Event.A, sm -> { sm.currentState = S2State.getInstance(); sm.score++; }); events.put(Event.B, sm -> { sm.score *= 10; }); } } //S2状态类 public class S2State extends State { private static final S2State instance = new S2State(); public static S2State getInstance() { return instance; } //S2状态只关心B、C事件 private S2State() { name = "S2"; events.put(Event.B, sm -> { sm.score = 0; }); events.put(Event.C, sm -> { sm.score--; sm.currentState = S1State.getInstance(); }); } } /** * 状态机核心类,状态流转的入口 */ public class StateMachine { int score; State currentState; public StateMachine() { score = 0; currentState = S1State.getInstance(); } public void triggerAB() { currentState.triggerEvent(Event.A, this); currentState.triggerEvent(Event.B, this); } public void triggerBC() { currentState.triggerEvent(Event.B, this); currentState.triggerEvent(Event.C, this); } }

    2021-06-24

  • 李小四 👍(13) 💬(0)

    设计模式_63: # 作业 组合优于继承 - 即使不需要,也必须实现所有的函数 >>> 最小接口原则,每个函数拆分到单独的接口中 - 新增事件要修改所有状态实现 >>> 观察者模式,用注解动态地把事件函数注册到观察队列中。 # 感想 看到状态接口类中直接使用了`obtainMushRoom()`这样具体的事件函数,感觉很不舒服。就像结尾的讨论,所有的状态类必须实现所有事件函数,新增一种事件状态接口和实现都要改。。。

    2020-03-30

  • 进击的前端er 👍(12) 💬(1)

    我有个前端组件,很适合这个模式,我正在尝试重构,发现代码缩减量可能达到50%以上,而且更容易理解

    2020-04-03

  • J.D.Chi 👍(12) 💬(0)

    Flutter里引入了Bloc框架后,就是非常典型的状态模式(或是有限状态机)。https://bloclibrary.dev/#/coreconcepts

    2020-03-30